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We examine thermal convection in a rotating spherical shell with a spatially non- 
uniformly heated outer surface, concentrating on three distinct heating modes : first, 
with wavelength and symmetry corresponding to the most unstable mode of the 
uniformly heated problem; secondly, with the critical wavelength but opposite 
equatorial symmetry; and thirdly, with wavelength much larger than that of the most 
unstable mode. Analysis is focused on boundary-locked convection, the associated 
spatial resonance phenomena, the stability properties of the resonance solution, and 
time-dependent secondary convection. A number of new forms of instability and 
convection are found : the most interesting is perhaps the saddle-node bifurcation, 
which is the first to be found for realistic fluid systems governed by partial differential 
equations. An analogous Landau amplitude equation is also analysed, providing an 
important mathematical framework for understanding the complicated numerical 
solutions. 

1. Introduction 
There are a number of fundamental issues central to the application of an ideal 

model of rotating spherical convection to real geophysical systems. One of them, which 
is of vital concern to geophysicists, is the likely effect of imperfections at the 
core-mantle boundary on convection in the Earth’s core and on the magnetic field, 
whether the imperfections be in topography (Hide 1967), heat flux (Bloxham & 
Gubbins 1985), or material properties. Gubbins & Richards (1986) proposed a 
correlation between the main features of the geomagnetic field at the coremantle 
boundary and temperature anomalies in the lower mantle, with the geodynamo 
controlled by prominent features of the lower mantle (Gubbins & Bloxham 1987). We 
have therefore set up an idealized problem in order to understand the possible thermal 
coupling between the core and the mantle. In an earlier paper (Zhang & Gubbins 1992) 
we explored flows driven by an imposed, laterally varying, boundary temperature and 
in this paper we examine the effect of such a boundary condition on convective 
instability. We refer to convection with an ideal homogeneous boundary condition as 
the uniform boundary problem, and convection with an inhomogeneous boundary 
condition as the non-uniform boundary problem. 

The timescale of mantle convection is much longer than that of core convection and 
therefore the thermal effect of the mantle on the core can be simulated by assuming 
a stationary non-uniform boundary condition for core convection. We thus consider 
the problem of classical thermal convection in a rotating spherical fluid shell 
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(Chandrasekhar 1961), but with a non-uniform temperature boundary condition on the 
outer spherical surface. The problem is governed by the Taylor number, T, measuring 
the rate of rotation, the Rayleigh number, R, associated with the strength of convective 
instability, and an imperfection parameter, E ,  defined as the ratio of the typical 
temperature difference on the outer surface to the temperature difference across the 
fluid shell. In addition, the scale and symmetry of the non-uniform boundary are of 
crucial importance. It is not feasible to explore fully the parameter space of the 
problem; fortunately the system exhibits a smooth dependence on the Taylor number 
at infinite Prandtl number (Zhang & Busse 1990) and we therefore concentrate on two 
representative Taylor numbers, T = lo4 and lo5, for which Coriolis forces are strong 
but not so large as to make nonlinear solutions difficult to compute. 

Though our main motivation is concerned with understanding the geophysical 
phenomenon, the problem is also of great interest to rotating fluid mechanics in 
general. In a rotating spherical fluid system there exist two types of basic flows: 
convective and baroclinic. Convective flows resulting from an instability of the basic 
state are in most cases driven by a radial temperature gradient across a spherical shell, 
the simplest case being a uniform distribution of heat sources (Chandrasekhar 1961). 
Baroclinic flows may be maintained by an externally imposed temperature variation on 
the boundary (e.g. Zhang & Gubbins 1992). In realistic systems, these two flows are 
likely to occur at the same time. As a result of the non-uniform temperature boundary 
condition, there exists, in contrast to the uniform boundary problem, no static 
equilibrium, and the unperturbated state is a steady flow, which is referred to as forced 
convection in this paper. 

The non-uniform boundary problem of spherical rotating convection differs in a 
fundamental way from the non-uniform boundary problem of Rayleigh-Benard 
convection (Kelly & Pal 1976, 1978; Weber 1973): the natural mode of rotating 
spherical convection for the uniform boundary problem is a travelling thermal Rossby 
wave. Kelly & Pal (1 976, 1978) investigated Rayleigh-BCnard convection, subject to a 
spatially periodic horizontal boundary temperature at small amplitude near the onset 
of convection. Their studies were restricted to a non-uniformly heated boundary at 
onset of convection. They found that the amplitude of convection could be considerably 
enhanced in the neighbourhood of the critical Rayleigh number of the uniform 
boundary problem. The regime of higher Rayleigh numbers was investigated by Yo0 
& Kim (1991), revealing more complicated time-dependent behaviour of the two- 
dimensional convection. No similar studies have been conducted in a system with 
rotation and spherical geometry. However, the combination of rotation and spherical 
geometry markedly changes the dynamical behaviour of the non-uniform boundary 
problem in a rotating spherical fluid shell. The convective flows are in the form of 
thermal Rossby waves (e.g. Busse 1983) which attempt to pass over the non-uniform 
boundary; the baroclinic flows produced by the spatial variation on the boundary, on 
the other hand, are likely to be locked into the boundary for a large range of 
parameters (Zhang & Gubbins 1992). These distinct features bring a wealth of new 
dynamics to the non-uniform boundary problem of spherical rotating convection and 
may have significant implications in the geophysical context. 

In a very general context, the bifurcation problem with spatially periodic external 
forcing has been studied on the basis of the amplitude equation approach (e.g. Coullet, 
Repaux & Vanel 1986; Coullet & Repaux 1987). Emphasis is on the effects of the 
difference between an external forcing wavelength and natural preferred wavelength. It 
was shown that the pattern is locked if the scale of the external forcing is close enough 
to the preferred natural scale, but transitions to quasi-periodic patterns occur if the gap 
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between the natural and the external wavelength is increased. While the full nonlinear 
numerical approach involving partial differential equations reveals detailed physical 
phenomena, a model system with an ordinary differential equation usually provides 
deep insight into the mathematical structure of the problem. One such system is the 
analogous Landau amplitude equation 

k = (p+iw)A-AIA12+c, 
where A is a complex variable, p, E are small real parameters, and w is a real constant. 
The parameter p is similar to the supercritical Rayleigh number; E resembles the small 
imperfection parameter above which is also denoted by E ;  and w is related to the Taylor 
number determining the frequency of oscillation for the uniform boundary problem 
E = 0. The relevant aspects of this amplitude equation, being parallel to our nonlinear 
numerical analysis of the spherical rotating convection, are studied in the Appendix, 
which provides an important mathematical framework in the discussion and 
understanding of the numerical results. 

The primary objective of the present paper is to examine how slight deviations from 
an idealized temperature boundary condition can influence convection in a rotating 
spherical fluid shell in the limit of infinite Prandtl number. The forced convection, 
linear stability of the forced convection and the subsequent nonlinear evolution of the 
non-uniform boundary problem are investigated. The paper will concentrate on the 
effects of different strengths, scales and symmetries of the temperature boundary 
imperfection. Three distinct classes of the spatial variation of the outer boundary 
condition are investigated: (i) the wavelength and equatorial symmetry of the 
boundary condition are the same as those of the most unstable mode of the uniform 
boundary problem; (ii) the boundary condition has the same wavelength as that of the 
most unstable mode but antisymmetry with respect to the equatorial plane; (iii) the 
scale of the boundary temperature variation is substantially different from the critical 
wavelength. The most interesting region of parameter space lies near the critical 
Rayleigh number of the uniform boundary problem, where spatial resonance 
phenomena of the non-uniform boundary problem can occur. 

The mathematical equations are set up in $2; different forms of the forced 
convection and the spatial resonance phenomenon are discussed in $ 3 ;  the stability 
properties of the forced convection are shown in $4; secondary convection, with a 
variety of time-dependences, including the saddle-node bifurcation, is presented in $ 5 ; 
and closing remarks are made in $6. 

2. Mathematical formulation of the problem 
2.1. Basic equations 

As the basic equations are similar to those described in Zhang (1991) (hereafter 
referred to as Zl), this section is kept brief. Consider a rotating spherical fluid shell of 
constant thermal diffusivity, K, constant coefficient of thermal expansion, a, and 
constant viscosity, v, with a uniform distribution of heat sources which produce the 
basic temperature gradient, VT, = -pr.  Using d = ro-ri, d 2 / q  d2/3 as scales for length, 
time and temperature, respectively, fluid motions at infinite Prandtl number are 
governed by the following nonlinear equations : 

(1) 
(2) 
(3) 

(v2p2 + T+ a p # )  v 2 v  + f i ~ ~  - RL?~ o, = 0, 
(v2p2 + $ a/a#) w - T+A?~ = 0, 
(v2 - a p t )  o, + y2 v = U. vo,, 
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where the temperature deviation from the pure conducting state is denoted by O,, the 
differential operators 2 and Y2, are the same as defined in Z1, and the velocity u is 
expressed as a sum of poloidal and toroidal vectors 

u = V x V x rv+V x rw. 
The physical parameters of the problem, the Rayleigh number, R, the Prandtl number, 
Pr, and the Taylor number, T, are defined as 

At infinite Pr the only nonlinearity is the advection term in (3). The velocity boundary 
conditions are obtained by assuming impenetrable, stress-free boundaries at the inner 
and outer surfaces of the shell, 

A perfect thermal-conducting boundary is assumed at the inner spherical surface while 
the temperature at the outer boundary is prescribed: 

where c is an ' imperfection parameter ' defined as 

and F is the typical amplitude of the boundary temperature variation. 
The non-uniform boundary problem of convection defined by (lk(3) and boundary 

conditions (4)-(5) is solved in three stages. First, steady three-dimensional solutions are 
obtained in terms of the parameter T, R, E and different patterns and symmetries of 0,. 
Secondly, stability of the nonlinear steady solutions is analysed with general 
infinitesimal three-dimensional perturbations. Finally, bifurcation solutions of the 
system are obtained for the parameter region where at least one such disturbance grows 
with time. 

2.2. Forced (steady) convection 
A rotating spherical system subject to a non-uniform temperature boundary condition 
cannot have a static conducting state, u = 0, for a finite value of E .  In the presence of 
a non-uniformly heated boundary, a baroclinic flow is produced and a mean flow can 
also be generated. Generally speaking, the nonlinear equations must be solved to find 
a steady solution of the system. While the expansions for the velocity field are the same 
as in Z1 we expand the temperature as 

0, = cf(r) 0, + 0, 

0, = 0, r = ri; 0, = &,(B,$), r = ro (5 )  

E = Y / b d 2 ,  

where the function x(r  - ri) 
[2(ro - r i d  

f ( r )  = sin 

is chosen withf(r,) = 0 and f ( r o )  = 1 so as to make the boundary conditions on 0, the 
unknown temperature, homogeneous : 

The governing nonlinear equations thus become inhomogeneous : 
O(ri, 8,$)  = O(ro, 8,$) = 0. 

( ~ ~ 9 ~  + fi a/a$) v2v + f i 2 ~  - RY~ 0 = ER f (r)  LY~ 0, 

V 2 0  -k Y2 v - u - V 0  = s(u.V - V2) f ( r )  0,. 

(6) 

(7) 

(9) 
(v2z2 + a/a+) w - $ 2 ~  = o (8) 
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The expansion then used for the temperature 0 is the same as in the uniform boundary 

0 = CI Blmnsinnn(r-ri) YF(0, $)+c.c., problem, 

where C.C. denote complex conjugate, the Yy(O,$) being normalized such that the 
spherical surface integral 

$Js I Yy(O, $)I2 sin Odd d$ = 1. 

The problem becomes identical with the uniform boundary problem when E = 0, but 
it is important to note that the case 6 = 0 is fundamentally different from the case of 
e-+ 0 : the non-uniform boundary problem is essentially nonlinear because of the 
singularity at the onset of convection of the uniform boundary problem. The method 
of solution and truncation scheme are similar to those described in Z1. 

2.3. Instability analysis 
To investigate the stability of the steady solutions, denoted by (v,,, w,,, 0,,), infinitesimal 
three-dimensional general perturbations, such as 

@ =  c BZmn sin nn(r - ri) YF(O, $1 exp (iM$ + gt), 
L m , n  

2 ,  m ,  n 

- 

are superimposed onto the steady solution, where exp (iM$) is the Floquet factor and 
the parameter M is an integer. The disturbances satisfy the same boundary conditions 
as the steady solution (u!, wo, 0,) and therefore the same expansions and truncation 
levels can be used. Substituting 

into (1)-(3), we can obtain the following linear homogeneous equations describing the 
stability of steady convection 

(10) 
(1 1) 
(12) 

(v, w, 0) = (v, + c ,  w,+ ic, 0,+ 0") 

( ~ $ 2 ~  + Tb/a$)  v20 + fi26 - ~2~ 0" = 0, 
(v2y2 + T+ a/a$) 6 - T+so = 0, 

(v2 - n) 0" + 2, G- us 00" - i i - v ~ ,  = eii- v(f(r) 0 ~ .  
This forms an eigenvalue problem with eigenvalue g = 0;. + iui, the real part of which 
represents the growth or decay rate of the perturbation, but only the eigenvalues which 
eventually control instability are of interest. 

2.4. Secondary convection 
If ui is finite at the instability boundary the secondary solution may be obtained by 
time-integration of the full nonlinear equations, but the absence of a p t  terms in (1)-(2) 
means that a very costly implicit scheme must be used. Coefficients of the expansions 
of the three dependent variables thus become a function of time, for instance 

0 = 2 OLmn(t) sin nx(r - ri) Yy(0, $) + C.C. 
1 ,  m ,  n 

With an implicit Crank-Nicolson-type scheme, the evolution of the system beyond the 
stability boundary is governed by the following equations between (vi, wt, 0,) at time 
ti and ( u ~ + ~ ,  w , + ~ ,  Of+,) at time t, + A t :  

(1 3) (v%z2 + fi a/a$) v2vi+, + f i p z ~ ~ + ~  - ~2~ o,+~ = e(Rcf(r) zZ @,), 
(v%z2 + fi a/a$) wifl - = 0, (14) 
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where N,,,,, = - O . ~ [ U , . W O ~ + U ~ + ~ . V O , + ~  +u~*WO,+ ,+U,+~*VO~] .  

The , :-step, At, for the numerical integration is kept small enough to ensure 
accuracy and, for several cases, solutions are checked using different values of the time- 
step At. 

3. Forced (steady) convection 
3.1. Boundary-resonant convection 

When the wavenumber and symmetry of the boundary condition are the same as the 
natural wavenumber and symmetry, spatial resonance is likely to occur, and the 
corresponding convection here is referred to as boundary resonant convection. Before 
proceeding to discussions of the results, it is appropriate first to introduce three 
important values of the Rayleigh number : R,, the classical critical Rayleigh number for 
the onset of convection without imposing the non-uniform boundary to the system; 
R,,, the Rayleigh number at which the forced steady solution becomes unstable and a 
bifurcation occurs, and the resonance Rayleigh number, R,, at which the amplitude of 
convection reaches its peak. 

In the neighbourhood of R,, where the spatial resonance phenomenon is likely to 
take place, the nonlinearity of the system is the most crucial factor in determining the 
basic properties of the convection even if the imperfection parameter e is infinitesimally 
small. Figure 1 (a) shows the average kinetic energy, E, normalized by its maximum 
value, as a function of Rayleigh number for several values of e with the boundary 
heating mode described by 

O,(6,6) = (1 + i) Yl(B,$) + C.C. (16) 
at T =  lo5, where the critical wavenumber for the onset of convection is m, = 6. 
Examples of the related structure of the convection are displayed in figure l(&d). 
For the purpose of comparison with the uniform boundary problem, it is worth men- 
tioning that the forced convection is stationary and eventually locked into the 
boundary temperature anomalies ; we shall sometimes refer this type of convection as 
' boundary-locked'. The effects of the boundary anomalies in the neighbourhood of 
(R-R,)/R, + 1 are greatly amplified. This strong amplification is likely to be 
connected with the fact that the inertial term in the equation of motion ((1) and (2)) 
is neglected in the limit of large Prandtl number, even though the forced steady mode, 
with the natural wavenumber and symmetry, is not the natural mode of the whole 
system. As R approaches the critical region for the uniform boundary problem, the 
amplitude of convection increases sharply as a result of the spatial resonance. With 
e -+ 0, we expect that R, + R,, as observed in the non-uniform boundary problem of 
Rayleigh-B6nard convection (Kelly & Pal 1978). However, the resonance Rayleigh 
number R, is strongly dependent on the imperfection parameter e, which increases 
from about R, = 5500 at e = 0.01 to about R, = 6200 at e = 0.025. This is largely 
because spatial resonance is a nonlinear phenomenon and related to the amplitude of 
convection as determined primarily by the size of e in the neighbourhood of R,. With 
increasing R - R,, the amplitude of convection decreases rapidly, usually indicating 
instability of the resonance solutions. For R/R, 4 1 ,  the forced convection represents 
a flow driven mainly by the temperature anomalies on the boundary. This type of flow 
can exist even in a strongly stratified fluid R < 0 (Zhang & Gubbins 1992). A prograde 
phase shift of the convection rolls with respect to the temperature anomalies on the 
boundary is clearly noticeable with increasing R. At the peak amplitude of the 
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FIGURE 1. (a) Kinetic energies of boundary-resonance convection as a function of the Rayleigh 
number at different imperfection parameters e for 0,(6,6) at T = lo5. The Em,, are 0.96, 4.85 and 
10.8, corresponding to E = 0.01,0.02 and 0.025, respectively. Dashed lines indicate unstable solutions. 
( k d )  Contours of 0, (on the left-hand side) and contours of u, (on the right-hand side) at the 
equatorial plane for (b) R = 3000, (c) R = 4600 and (d )  R = 5600 at T = lo5 and e = 0.01. The solid 
contours show u, > 0; the dashed contours show u, < 0 or 0, < 0. 

resonance, R M R,, the phase of the rolls is shifted about 180°, resulting in two 
temperature layers. This is clearly shown in figure l(d). The instability analysis 
presented in the next section shows that this type of steady solution becomes unstable. 

The larger the scale of the boundary anomalies the deeper its effects penetrate 
(Zhang & Gubbins 1992). We therefore expect that the effects of the imperfection 
would be dynamically more substantial if the scale of 0, were large enough to penetrate 
to a substantial depth. Figure 2 illustrates the effects of the scale on the non-uniform 
boundary problem for the case 

(17) 0,(4,4) = (1 + i) Y,"(d, q5) + C.C. 
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FIGURE 2. As figure 1 (a) but for T = lo4 and 0,(4,4): (a) for E = 0.001, 0.004 and 
(b) for E = 0, 0.005, 0.01, where the E = 0 solution corresponds to travelling waves. 

at T = lo4 where the critical wavenumber for the onset of convection is m, = 4, and the 
kinetic energy E of convection is plotted as a function of the Rayleigh number R. The 
curve for c = 0 is from the solution of the corresponding uniform boundary problem. 
When e 6 0.004, the effects of the non-uniform boundary respond to the spatial 
resonance phenomenon; when e 2 0.005, however, the resonant effects are so large that 
the resonant Rayleigh number R, is markedly different from R,. Though the convection 
is largely driven by the convective instability, the boundary anomalies prevent it from 
forming the travelling-wave type flow. It is of importance to note that there exists a 
critical value e, z 0.004. When e0 Q 0.004, a smooth curve E = E(R, e = eO) for the 
forced convection can be obtained as a function of the Rayleigh number (figure 2a); 
when eo > 0.004, the solution curve E = E(R, e = eo) has a turning point (figure 2b), to 
which another new branch with different character is likely to be connected. 
Numerically, it becomes increasingly difficult to extend the curve, due largely to the 
unknown character of the new branch; physically, the new branch with a smaller 
amplitude is likely to be unstable and therefore much less interesting. At this point in 
the discussion, it is much more profitable to look at the similar structure of the steady 
solution of the amplitude equation in the Appendix, where, the critical value e, being 
about 2/ 1.55, different branches of the steady solution can be obtained analytically and 
the corresponding curves (with or without a turning point) are presented in figure 
lO(b). 

3.2. Harmonic-resonance convection 
An important question, particularly in a rotating spherical system, is whether and how 
a large-scale feature of the boundary anomalies can be reflected in nonlinear convective 
flows when a smaller scale is dynamically preferred by the system. This is investigated 
by imposing a temperature imperfection 

(18) 
on the boundary for T = lo5, where the most unstable wavenumber is m, = 6. The 
most remarkable phenomenon observed for this case is secondary spatial resonance, 

0,(3,3) = ( 1  + i) Y,”(O, 4) + C.C. 
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FIGURE 3. (a) Kinetic energies of various components of secondary resonance convection as a 
function of the Rayleigh number for E = 0.08 and 0,(3,3) at T = lo5, (b) the corresponding structure 
for R = 5800. 

an example of which is illustrated in figure 3(a). R,(m = 3) is much higher than 
R,(m = 6)  at T =  lo6, and for the range R G R,(m = 3) the spatial resonance is a 
consequence of the finite-amplitude rn = 6 mode which is produced by nonlinear 
interactions of the m = 3 mode. While the kinetic energy pertaining to the m = 3 mode 
increases nearly continuously with increasing Rayleigh number, the m = 6 mode gives 
rise to a resonance peak. We therefore call this ' harmonic resonance' convection. 
Because the harmonic resonance is associated with nonlinear interactions of the 
harmonics of the external forcing, the resonance at m = 6 can also occur with 

0,(2,2) = (1 + i) Y,2(8,$) + C.C. 
but is likely to be weaker. Similar phenomena have been discussed in other systems 
(Hall & Walton 1978; Pal & Kelly 1978; Coullet & Repaux 1987). The Rayleigh 
number R, at which harmonic resonance occurs is again dependent on the amplitude 
of convection. The larger E is, the higher R, seems to be. The corresponding structure 
of the steady convection is shown in figure 3(b). It is clearly dominated by the same 
scale as the temperature on the boundary (m = 3) but with a strong modulation 
through other wavenumbers, mainly m = 6.  

3.3. Antisymmetric convect ion 
There are two basic spatial symmetries in a rotating spherical system with equatorially 
symmetric boundary conditions : they are either symmetric or antisymmetric with 
respect to the equatorial plane (Roberts 1968); the former symmetry is preferred 
because of the nature of the Coriolis forces (Busse 1970). It is thus interesting to 
examine whether equatorially antisymmetric boundary conditions would alter the 
symmetry selection. 

By imposing an antisymmetric temperature boundary condition such as 
0,(5,4) = (1 +i) Y;(B,$)+c.c. (19) 

the equatorial symmetry of the forced convection is, strictly speaking, destroyed by the 
8 FLM 250 
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(a) Heat flux H,  plotted as a function of time for different R with antisymmetric boundary 
conditions: reading upwards, R = 1750, 1850, 1950,2100 at T = lo4. (b) Toroidal streamlines on the 
outer surface of the shell for the steady solution and (c) time-dependent convection, both at R = 2100, 
T = lo4 and e = 0.01. 

presence of the antisymmetric boundary imperfection. However, equatorial symmetry 
can be still applied to individual azimuthal wavenumbers. The symmetry properties can 
be inferred from (7b(9). Equations (7) and (8) are linear, the differential operators 
V2, 2 are symmetric (that is, the symmetry properties of a field will not be changed 
after the operation), and the operator 2 is antisymmetric. It follows that u has the same 
equatorial symmetry as that of 0 but opposite to that of w. The nonlinear term 
u.V(@+ 0,) in (9) determines the symmetry selection of individual wavenumbers. In 
general, the symmetry properties of a primary solution with the boundary condition 
@,(I = m, + 1 ,  m = m,) can be expressed by the following selection rules : 

rn = 2jms, j = 0,1,2,3, ..., 
m = (2j- l)m,, j = 1,2,3, ..., 

O 1 , m , ~ l , m ,  w ~ + ~ , ~ ,  l+m = even, 
@ l , m , ~ l , m ,  ~ ~ + ~ , ~ , l + m  = odd, 

where @ l ,  m,  ul ,  and wl, are the coefficients of spherical harmonics Y?(O,$) used for 
different variables. This result can also be obtained geometrically by considering 
rotations about the polar axis and reflexion in the equatorial plane (Gubbins & Zhang 
1993). With the above symmetry properties, the amount of computation for the forced 
solution can be dramatically reduced. 

Such convection has been examined in detail with the antisymmetric temperature 
boundary 0,(5,4) for T = lo4, where the R, for the antisymmetric mode is about twice 
as large as that for the symmetric mode (Zl ,  figure 1 ) .  Figure 4(b)  illustrates a typical 
pattern of toroidal streamlines on the outer spherical surface. The flow is clearly 
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dominated by the m = 4 mode and is largely antisymmetric with respect to the equator; 
the critical convection mode of the uniform boundary problem has been excluded in 
the forced solution by symmetry considerations, but will be included in the stability 
analysis of the primary solutions in 44.3. 

4. Stability of the forced convection 
4.1. Stability of the boundary-resonance solution 

The conditions under which boundary-locked steady convection can survive with 
increasing strength of the convective instability is of crucial importance in 
understanding thermal coupling. Stability analysis is therefore a central element of our 
whole analysis, and our attention is focused on the (R,  E )  parameter space for each case 
discussed in the last section. It is worth emphasizing the difference between our 
instability analysis and the instability analysis for the onset of convection. Only a linear 
analysis is required for the convective instability when E = 0; for the cases of E $; 0, 
however, it is necessary to compute many nonlinear solutions in the parameter space 
(R, c) before performing linear stability analysis on every nonlinear solution. Typically, 
more than 200 nonlinear solutions are obtained for each case. 

The stability properties of the boundary resonance solutions for T =  lo4 and 
0,(4,4) are displayed figure 5(a), where the instability curve of the uniform boundary 
problem is represented by E = 0. Different curves correspond to selected values of the 
imperfection parameter and numbers near the curves represent the characteristic 
frequency of the most rapidly growing disturbance. Different slopes between the 
curves with E = constant and the curve with e = 0 are expected in the parameters space 
shown in the figure because they correspond to totally different basic states. The slopes 
of the curves with non-zero 8, however, converge to the slope of the curve with e = 0 
when R 4 R, and the parameter E is small, which are of less interest and therefore not 
shown in the figure. For the curves with 8 > 0.004, the zero denotes vi = 0 for the 
whole curve. The criteria of stability or instability of steady convection are based on 
the behaviour of a linearized system ( l o t (  12). A number of subsets of the linear system 
characterized by different Floquet parameters M were examined to determine the 
stability of a solution. The M = 0 set had the largest growth rate and therefore controls 
stability of the nonlinear solutions; the M = 0 results are shown in figure 5(a). 

The stability analysis suggests two types of transition. In the first type, with weaker 
boundary effects for c d E ,  = 0.004, the stability boundary is characterized by non-zero 
values of the characteristic frequency which are slightly different from the related value 
of the uniform boundary problem E = 0. The forced convection becomes unstable 
beyond the spatial resonance peak; the post-resonance stability region, from R, to Ric, 
increases significantly with increasing E ,  as also indicated by the dashed lines in figure 
1 (a) and 2(a). This type of instability is likely to lead to Hopf-type bifurcation; the 
corresponding new solution is similar in some ways to the uniform boundary 
convection. In the second type, with the strong boundary effects for E > c, = 0.004, the 
boundary-locked steady solutions become unstable at the turning point (e.g. figure 2 b, 
the E = 0.01 curve) characterized by the zero imaginary part of eigenvalues, indicating 
the coalescence and disappearance of two steady solutions. One is stable and the other 
is unstable, with increasing the Rayleigh number, though the unstable steady branch 
cannot be obtained in our numerical analysis. The second type of transition is likely 
to be related to a saddle-node bifurcation. It strongly suggests that there exists a 
critical line in the parameter space (c, R) lying approximately between the two points 
( E ,  R)  = [0.005,2230] and [0.03,2500]. Crossing this line, the stability analysis indicates 

8-2 
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FIGURE 5. Real part of the largest growth rate r from the linear stability analysis as a function of 
Rayleigh number: (a) for the symmetric boundary 0,(4,4) and (b) for the antisymmetric imperfection 
0,(5,4) at T = lo4. 

a saddle-node bifurcation. Again it is extremely helpful to see the analogous stability 
analysis for the relevant amplitude equation in the Appendix, which shows almost the 
exactly same features of the stability properties. The precise nature of the bifurcation 
of course can only be revealed by obtaining the time-dependent solution of the full 
nonlinear convection. The remarkable feature of the saddle-node bifurcation suggested 
by the stability analysis will be confirmed in the next section. 
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The appearance of the second type of transition is not only related to the strength 
of the boundary anomalies but also to their scale. To shed some light on this important 
question, the case with T = lo5 and 0,(6,6) was also studied in detail. Its stability 
diagram is presented in figure 6(a) .  Not surprisingly, the boundary effects on the 
system become much weaker, though the system is still strongly stabilized with the 
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Nt 
4 
4 
5 
5 
6 
6 
8 
8 

R 
5.4 x 103 
5.6 x 103 
5.4 x 103 
5.6 x 103 
5.4 x 103 
5.6 x 103 
5.4 x 103 
5.6 x 103 

U 

(- 1.234 +i10.55) 
(0.205 +i10.89) 

(- 1.230 + i10.43) 
(0.210 +i10.76) 

(- 1.225+i10.39) 
(0.215 +i10.72) 

(- 1.222+i10.37) 
(0.21 7 + i10.71) 

TABLE 1. The convergence behaviour near the stability boundary with increasing truncation 
parameter N,  for T = lo5 and E = 0.01 

presence of the non-uniform boundary (Ric z 6200 at e = 0.02, which is much larger 
than R, w 5400 at e = 0). There is no indication of the saddle-node bifurcation in the 
parameter space studied; instead, the most unstable eigenmode switches from 
vanishing eigenfrequency to a different branch with non-zero values of gi when e 
exceeds 0.022. 

The stability boundary of a nonlinear solution is usually sensitive to the truncation. 
The results near the stability boundary at different levels of the truncation are shown 
in table 1 to give an impression of the accuracy of our analysis. Most of our results 
presented in this paper are calculated based on the truncation level Nt = 6 which 
appears to have a numerical inaccuracy of less than 2 YO. 

4.2. Stability of the harmonic-resonance solution 
A much larger value of e than in the case of the resonance wavelength is needed in order 
to lock the convection into the boundary when a large-scale non-uniform boundary 
condition is imposed but a much smaller scale is selected dynamically. Displayed in 
figure 6(b) is the stability diagram or the case of T = lo5 and 0,(3,3). Comparing 
figure 6(a) with figure 6(b) indicates that instability of the harmonic resonance solution 
is mainly caused by the convective instability in connection with the m = 6 mode, 
which has much lower R,. As E exceeds 0.08, the steady solutions dominated by the 
boundary wavenumber m, = 3 and modulated by larger wavenumbers are locked into 
the boundary and stable. 

Though it came as a surprise that the weak boundary modulation can change the 
prominent features of the convection dramatically, most of the features can be 
explained on the basis of two competing influences: the Rossby-wave type of 
convective instability and the stability of the boundary-locked flow produced by 
baroclinic effects. One obvious but important feature is that the non-uniform 
temperature boundary condition stabilizes the system. The Rayleigh number R, 
always exceeds the classical value of R,. This stabilizing effect is similar to that found 
in Rayleigh-Benard convection (Weber 1973). 

4.3. Stability of the antisymmetric convection 
Antisymmetric perturbations are stable for the cases of equatorially symmetric 
boundary conditions (Busse 1970) and can safely be ignored, but symmetric 
perturbations cannot be ignored in the case of equatorially antisymmetric boundary 
conditions. Equatorial symmetry breaking is central to the stability analysis for the 
forced antisymmetric convection. 

Solutions of the linear homogeneous equations (10)-(12) can be divided into two 
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sub-classes. One of them has the same symmetry as that of the forced steady solution 
in $3.3, and the other is described by the following relations: 

O1,rn,vl, rn, w ~ , ~ ,  I+m = odd, m = 2jms, j = 0,1,2,3, .. ., 
@ l ,  rn, 01, rn, w ~ + ~ , ~ , I + ~  = even, m = (2j- l)ms, j = 1,2,3, ..., 

which includes the critical symmetric mode for the onset of the uniform boundary 
convection. 

The symmetric modes control the stability of the forced antisymmetric convection, 
and the corresponding stability diagram is shown in figure 5(b), where the numbers 
represent the imaginary part, ci, of the most rapidly growing perturbation. By 
comparing the values of gi from the instability analysis of the antisymmetric 
convection (e > 0 curves) with those of the most unstable mode for the perfect 
convection (e = 0 curve), it becomes clear that instabilities of the antisymmetric 
convection are caused by the natural mode (m = 4, equatorially symmetric) which is 
excluded in the forced antisymmetric solution. Detailed examination of the most 
rapidly growing eigenvector confirms this observation. For the parameter range 
(R < 2 4 )  investigated in this paper, the antisymmetric temperature boundary exerts 
relatively much weaker influences on convection, and spatial resonance cannot occur. 
Even at E = 0.05, the instability boundary is shifted only slightly from that of the 
uniform boundary problem. 

5. Secondary convection 
5.1. Hopf-type bifurcation 

In this case, the bifurcation is local, and linear stability analysis can usually yield useful 
information about the stability boundary, the physical mechanism of instability, and 
the form of a bifurcation solution. However, there are no grounds for determining the 
properties of bifurcation solutions based on linear stability analysis. With small values 
of E shown in figures 5(a) and 6(a), the instabilities cause Hopf-type bifurcation and 
lead to periodic convection. Even though solutions of the nonlinear equations (13F( 15) 
confirm the stability boundary and oscillation frequency predicted by the instability 
analysis, time-dependent secondary convection shows surprisingly interesting features. 
An example of secondary convection for T = lo5, R = 5700, E = 0.01 and 0,(6,6) is 
displayed in figure 7; the corresponding stability curve for e = 0.01 is shown in figure 
6(a). Of particular interest is the heat flux, which is negative during part of the 
oscillation when the kinetic energy drops to about 10% of its peak value. Detailed 
examination of the pattern of convection at different instants, four of which are shown 
in figure 7 (c) ,  reveals that the convection vacillates between the boundary-driven type 
and the boundary-resonance type. At the time of slightly negative heat transport, 
t = 3.34, the flow is concentrated near the outer boundary and is driven primarily by 
boundary anomalies; at the time of maximum heat transfer, t = 3.62, the pattern of 
flow resembles the resonant convection of figure 1 (d) .  Also displayed in figure 7(a) is 
the solution (the solid curve) at the higher truncation Nt = 8 in an effort to estimate 
the accuracy of the secondary convection. The phase difference between the dashed 
(Nt = 6) and the solid (N,  = 8) curves has been offset slightly to show their small 
differences more clearly. In addition, there is almost no difference in convection 
structure for different truncation levels. 
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FIGURE 7. (a) Heat flux H,, plotted as a function of time for R = 5700, T = lo5, e = 0.01 and 
0,(6,6), where the dashed line is for truncation N,  = 6 and the solid line for N,  = 8. (b)  The 
corresponding kinetic energies of various components. (c) The pattern of convection at the different 
instants shown. 
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5.2. Saddle-node-type bifurcation 
In this case (corresponding to the stability results in figure 5(a) for T = lo4), the 
bifurcation is global and the precise nature of the secondary convection cannot be 
predicted based on linear stability analysis. Except possibly for the stability boundary 
at which the transition occurs, very little can be learnt about the behaviour of the new 
nonlinear convection without solving the full nonlinear problem by time integration of 
the system (13)-(15). When the Rayleigh number R is slightly beyond the stability 
boundary for 0.004 < E < 0.03, where the imaginary part of the most rapidly growing 
disturbance is zero (figure 5a), the forced steady convection becomes unstable to 
oscillatory convection but the period of oscillation is extremely large. The period of 
oscillation decreases rapidly as R- R, is increased. An example of this behaviour is 
illustrated in figure 8 for E = 0.01. The total heat flux, H,, as a function of time for four 
different Rayleigh numbers is shown in figure 8 (a), and the corresponding trajectories 
in the phase plane ( E , 8 )  are shown in figure 8(b). The period of oscillation 7 at 
R = Ric+0.3, where Ri, is about 2369.2, is r x 100. This decreases sharply to about 
r x 12 at R = R,,+ 10.8 while the trajectories move away from the saddle cycle. 
Physically, the behaviour of the nonlinear system is clear : the temperature anomalies 
on the boundary tend to lock the convection while the convective instability produces 
azimuthally travelling rolls. This physics is perhaps most clearly illuminated in the 
evolution of the convection pattern displayed in figure 8(c) at six different instants 
during one oscillation period. It takes a long time for the convection rolls to pass over 
the boundary anomalies when there is only a moderate phase difference between the 
rolls and the boundary temperature; the rolls move quickly when they are out of phase 
with the boundary temperature. Mathematically, this corresponds to a saddle-node 
bifurcation : two distinct steady equilibria, a sink and saddle, collide and disappear, 
leaving a new periodic solution in their wake. This is quite a common phenomenon in 
simple dynamical systems governed by an ordinary differential equation. An analogous 
saddle-node bifurcation for the amplitude equation is given in figure ll(b) in the 
Appendix. To the authors’ knowledge, however, this is the first time that a saddle-node 
bifurcation has been found in a realistic convective fluid system governed by partial 
differential equations. Finally, it is worth noticing the similarity between figure 8(a) of 
the spherical convection and figure 11 (b) of the amplitude equation. 

5.3. Vacillation between six and three rolls 
In a rotating spherical system, the scale of convection is determined dynamically by the 
Taylor number, which measures the rate of rotation, rn, - fi (Roberts 1968). For the 
problem of the uniform boundary convection, wavenumber-vacillation convection 
becomes possible in a proper parameter space (codimension-2 bifurcation) as a result 
of two Competing scales (Zl). A non-uniformly heated boundary with a different 
wavelength from the critical one introduces a new competing scale ; different forms of 
secondary convection, including the wavenumber-vacillation convection, can be 
obtained, in a principle, by choosing proper values of the imperfection parameter E .  

For E = 0.01 and 0,(3,3) at T = lo5, corresponding to weak boundary effects, 
secondary convection (see the stability diagram figure 6 b)  is approximately described 
by six-roll drifting convection with a periodic change in amplitude, as shown in figure 
9(a). The time-dependence in amplitude is caused by the different phases between 
drifting rolls and the temperature boundary. With larger boundary influence ( E  = 0.07, 
figure 9b), secondary convection has a dominant steady feature of three rolls, similar 
to the boundary-locked solution shown in figure 3 (b),  with a strong modulation from 
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the six-roll solution. The corresponding heat transport varies substantially during the 
vacillation. In an intermediate region of the parameter e, the secondary convection 
demonstrates wavenumber vacillation between three and six rolls, as displayed in figure 
9(c). The convection is primarily dominated by the wavenumber m = 6 mode 
(E(m = 6)  = 12.73, E(m = 3) = 3.78) at the instant of maximum heat transfer t NN 8.30; 
when heat transfer reaches a maximum ( t  z 8.04), the flow shows the dominant feature 
of three-rolls (E(m = 6) = 2.39, E(m = 3) = 4.36). The corresponding heat transport 
varies drastically during the vacillation. 

To illustrate the bifurcation sequence with harmonic resonance convection, consider 
the case with heating 0(3,3), T = lo5, R = 5900, and m, = 6 as the imperfection 
parameter e increases from 0 to 0.085 : drifting six-roll (e = 0) + amplitude-vacillation 
six-roll (0 < 6 < 0.04) +vacillation between six and three rolls (0.04 < e < 0.06) + 

amplitude-vacillation three-roll (0.06 < 6 < 0.08) + boundary-locked steady conve- 
ction (6 > 0.08). 

5.4 Transition to nearly symmetric convection 
The effects of antisymmetric boundary conditions on convection are much less 
significant than those of symmetric conditions, owing largely to the strong influences 
of the Coriolis forces. The steady antisymmetric convection loses its stability to 
convection that is dominated by the symmetric mode. The secondary convection 
bifurcating from the forced steady antisymmetric solution, as a result of equatorial 
symmetry breaking, does not have any symmetries with respect to the equator. Figure 
4 (a) shows four different time-dependent solutions with increasing Rayleigh number. 
Just above the instability boundary at R = 1750, strong interactions between the two 
symmetries give rise to higher frequency oscillations (figure 4 a). These interactions 
become increasingly insignificant with increasing Rayleigh number as the equatorial 
symmetric mode increasingly dominates over the antisymmetric modes, as shown by 
the streamlines in figure 4(c). When R is increased to 2100 at 6 = 0.01, there is very little 
difference between uniform and non-uniform boundary convection except for the weak 
modulation of the amplitude of convection by antisymmetric boundary anomalies. 

6. Concluding remarks 
We have explored the non-uniform boundary problem with special emphasis on the 

competing basic flows : baroclinic and convective. The former is associated with 
boundary temperature anomalies which tend to lock the flow into the boundary; the 
latter produces time-dependent convection in the form of travelling waves. Though the 
non-uniform boundary considered in this paper is only concerned with the temperature 
boundary condition, the results may provide insight into a broad range of non-uniform 
boundary problems because the physics of other kinds of boundary condition, such as 
boundary topography, is similar but much more difficult to model. 

The limit of infinite Prandtl number studied in this paper represents the simplest case 
because advection of momentum is neglected and the non-uniform temperature 
boundary condition is likely to exert a maximum influence on the system. The 
properties of linear and nonlinear convection are quite different for fluids with different 
Prandtl numbers (Zhang 1992), and, thus, it is desirable to study the fluid with 
moderate Prandtl numbers where the momentum advection is of significance. 

We thank Dr M. R. E. Proctor for valuable discussions about the problem, who also 
suggested the amplitude equation studied in the Appendix. Helpful discussions with 
Professor C. Jones in the course of revising the paper are also appreciated. K. Z .  thanks 
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Appendix. An analogous Landau equation 
In parallel to our numerical analysis of the problem of rotating spherical convection, 

we have studied the steady solution, stability of the steady solution and the 
corresponding bifurcation for the analogous amplitude equation described in 8 1 .  The 
amplitude equation is simple but provides an important and useful mathematical 
framework for the understanding of our complicated nonlinear numerical solutions. 

A. 1 .  Steady solution 
Without loss of generality, we may rewrite the amplitude equation for setting w = 1 ,  

A = (p+i)A-AIAI2+e, 
where IAl is a complex variable, E is a positive imperfection parameter and ,u is a 
positive control parameter. For a steady equilibrium solution A,, by setting A, = 0 and 
denoting A ,  = X,,+i& and 2 = IA,I2 = X i +  Yi,  it can be shown that Z satisfies the 
following cubic equation : 

23-2,0+2(,2+ = 0, 
which can be solved analytically using a standard formula for a cubic equation. It is, 
however, of importance to note that the nature of bifurcation from equilibrium is 
closely associated with the number of real roots of this cubic equation. With one steady 
solution, we may expect a smooth curve 2 = Z(p, E = e0) and the corresponding 
bifurcation may be local (like Hopf type); with three solutions, we expect the 
appearance of a turning point in the curve Z = Z(p, E = E, )  and the corresponding 
bifurcation may be global (like saddle-node type). In the parameter space (p, E ) ,  regions 
having one and three real solutions are separated by the parameter boundaries defined 
by the equation 

This equation gives rise to the two lines (figure 10a) in the parameter space (p, c2) which 
are connected at a point (p = 1.74, e2 = 1.55) and form an angle facing the direction 
of increasing p and E .  Inside the angle (region 11), there exist three real solutions; 
outside the angle (region I and 111), there is only one solution. It follows that, for a 
small imperfection parameter e2 < 1.55, only one steady solution Z can be found for 
any given value of p. An example of the steady solution 2 = Z(p,t: = 1) is presented 
in figure lO(b). Three real solutions emerge in region I1 with c2 > 1.55. An example 
2 = Zh, 8 = 2) is also displayed in figure I0 (b) : there are three distinct steady solutions 
in the parameter range 2.72 < ,u < 4.07 and but only one solution when R < 2.72 or 
R > 4.07. 

A.2. Stability of the steady solution 
To investigate the stability of the steady solution, we linearize the nonlinear equation 
by assuming 

A = (X,+-x)+i(&+y), 
where x and y are small perturbations of X ,  and 5. Stability of the nonlinear 
equilibrium is then related to the following linear equation : 

36 + 72p2+ 3 6 , ~ ~  - 3 2 4 ~ ~ ~  - 36e2p3 + 2 4 3 ~ ~  = 0. 

1 = (u-3xi- Y,")x-(l +2X0 r,)y,  
3 = (1-2X0 &)x+(p-3Y,2-X;)y. 
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FIGURE 10. (a) Different regions in the parameter space (,u, 2). In regions I and 111, there exits only 
one steady solution: in region I1 there exit three steady solutions. (b) Steady solutions Z = Z(,u) for 
E = 1.0 and 2.0. 

Though the steady solution &I2  is algebraically complicated, the stability equation 
seems quite simple, the corresponding growth rate CT being given by 

Two important features are evident from the above equation: (i) a Hopf bifurcation 
cannot occur if the amplitude lAnl > 1 ; (ii) a necessary condition for the occurrence of 
a Hopf bifurcation is E < 2/2. 

We again look at the examples for e = 1 .O and 2.0, the stability results of which are 
displayed in figure lO(b), where the dashed lines denote unstable steady solutions and 
the solid lines represent stable equilibria. For the smaller value E = 1.0, the steady 
solutions become unstable at pc = 1.365. A simple pair of pure imaginary eigenvalues 
(v = ki0.731) at the critical point indicates a Hopf bifurcation. For the larger value 
E = 2, the stability properties are more complicated because of the coexistence of the 
three equilibria. The steady solutions denoted by the solid line I, are stable (sinks) while 
the second branch 11, connected with I, corresponds to unstable solutions (saddles). 
The third branch 11, with the smallest amplitude is always the most unstable and 
characterized by a complex eigenvalue with a positive real part. Crossing from region 
I1 into region I11 in figure lO(a) or increasing p from p < 4.064 to p > 4.064 at the 
turning point (figure lob ,  E = 2), the two steady equilibria, a sink and a saddle, 
coalescence and subsequently disappear, suggesting a saddle-node bifurcation. 

A.3. Hopf and saddle-node bifurcation 
Both the Hopf and saddle-node bifurcations give rise to a new periodic solution. The 
Hopf bifurcation for small E is local and, subsequently, the main features of the new 
periodic solution close to the critical point can be predicted on the basis of linear 
stability analysis, which is not true for a global saddle-node bifurcation. 

CT = 0.- 21A012) k ( 1 ~ ~ 4 -  1);. 
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FIGURE 11. (a) Periodic Hopf-bifurcation solutions IA(t)lz at e = 1.0 and (b) saddle-node 

bifurcation solutions at E = 2.0 for different values of p .  

To gain an impression of new bifurcation solutions, we solve numerically the 
following nonlinear differential equations : 

k= px- Y-X(XZ+ Y2)+&, 
Y = p Y + X -  Y(X2+ Y”, 

in the neighbourhood of the bifurcation point for E = 1.0 and 2.0, A(t)  being 
X(t)+iY(t). Figure 11 (a) shows three periodic solutions, !A!’, as a function of time, for 
p = 1.37, 1.40 and 1.43 at e = 1, the bifurcation point being ,uc = 1.365. The purely 
imaginary eigenvalues (T = fi0.731 at the critical point suggest the period of the 
oscillation T, = 8.6 for a new nonlinear solution, while the periodic solution at 
p = 1.370 (the solid curve in figure 11 a) gives TO = 8.8. With increasing p, the period 
increases from TO = 11.0 at pc = 1.40 (the dotted curve) to T, = 12.4 at p, = 1.43 (the 
dashed curve), due to the nonlinear effects of a much larger amplitude. In this case, a 
limit cycle emerges from the unstable equilibrium, and the behaviour of the bifurcation 
solution is predicted by linear analysis at the critical point. The saddle-node bifurcation 
is complicated but much more interesting. We present three new periodic solutions in 
figure 11 (b)  for p = 4.07,4.08 and 4.09 at E = 2, the bifurcation point being p, = 4.06. 
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Just after the bifurcation at ,u = 4.07, the new solution (the solid curve in the figure) 
is characterized by a long period with T, = 154. The amplitude IAI2 remains almost 
constant except in a very short interval in which JAI2 reaches its peak. The period 
decreases rapidly, from T, = 154 to 76, when the system slightly departs from the 
saddle node where the coalescence of a sink and a saddle takes place. 
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